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Abstract

A combination of analytic modeling and sys-
tem identification methods have been used to de-
velop an improved dynamic model describing the
response of articulated rotor helicopters to control
inputs. A high-order linearized model of coupled
rotor/body dynamics including flap and lag degrees
of freedom and inflow dynamics with literal coeffi-
cients is compared to flight test data from single ro-
tor helicopters in the near hover trim coodition.
The identification problem was formulated using
the maximum likelihood function in the time do-
main. The dynamic model with literal coefficients
was used to generate the model states, and the mod-
el was parametrized in terms of physical constants
of the aircraft rather than the stability derivatives,
resulting in a significant reduction in the number of
quantities to be identified. The likelihood function
was optimized using the genetic algorithm ap-
proach. This method proved highly effective in
producing an estimased model from flight test data
which included coupled fuselage/rotor dynamics.

Using this spproach it has been shown that blade -

flexibility is a significant contributing factor to the
discrepancies between theory and experiment
shown in previous studies. Addition of flexible
modes, properly incorporating the coastraint due to
the lag dampers, results in excellent agreement be-
tween flight test and theory, especially in the high
frequency range.

Presented at Piloting Vertical Flight Aircraft: A
Conference On Flying Qualities and Human Fac-
tors, San Francisco, California, 1993,

Introduction

The investigation of rotorcraft dynamics, and
specifically the coupled fuselage/rotor dynamics, is
motivated by increasing sophistication in rotorcraft
stability analyses and by the emergence of high-
performance flight control system design require-
ments. The past few years have seen a concentrated
effort directed toward providing an analytic simula-
tion model of coupled fuselage/rotor dynamics and
model validation against flight test data.

Helicopter dynamics include the rigid-body

responses demonstrated by fixed-wing aircraft,
plus higher-frequency modes generated by the in-
teractions of the rotor system with the fuselage. For
earlier flight control system designs with lower
bandwidth requirements, it was satisfactory to use
low-order analytic models which did not accurate-
ly model the high-frequency rotor dynamics; with
the recent introduction of high-performance, high-
bandwidth control system specifications, it has be-
come increasingly necessary to correctly model the
coupled fuselage/rotor dynamic modes. It has long
been known that flap dynamics introduce signifi-
cant time delays into the rotor system, and more re-
cently, Curtiss has shown that inclusion of the lag
dynamics is important in the design of high perfor-
mance control systems (Curtiss, 1986). Receat
studies have explored the possibility of using rotar
state feedback designs to damp blade motion (Ham,
1983). An accurate understanding of the coupled
fuselage/rotor dynamics is therefore important in
rotorcraft coatrol system design and stability analy-
ses.

Recent flight test experiments have shown
that existing simulation models do not accurately



predict these high-frequency modes (Ballin et. al,
1991, Kaplita et. al, 1989, and Kim et. al, 1990).
These studies show significant differences between
theory and experiment associated with the coupled
rotor/body dynamics, especially in the frequency
region dominated by the rotor lag motion. This re-
search is therefore directed toward providing an im-
proved understanding of the aeroelastic and
aeromechanical phenomena which determine the
coupled rotor/body dynamics at hover.

In order to gain physical insight into helicop-
ter dynamics, development of linear models incor-
porating coupled rotor/fuselage dynamics has long
been a research objective. Past approaches to linear
model development have included direct numerical
perturbation of nonlinesr simulations (Diftler,
1988), identification of state-space stability and
control matrix elements (Tischler, 1987), and ana-
lytic derivation of linear equations of motion (Zhao
and Curtiss, 1988). This study uniquely combines
system identification methods with analytic model-
ing techniques in order to investigate helicopter
hover dynamics and to arrive at an improved linear
model. The emphasis is on the high-frequency dy-
namics of the coupled rotor/body motion.

The identification study is carried out on
flight test data from a Sikorsky H-53E helicopter at
hover, using previously published data (Kaplita et.
al, 1987, and Mayo et. al. 1990).

Research Objectives

This paper describes an investigation into the
response of articulated rotor helicopters to control
inputs in hover. The goal is an improved under-
standing of the coupled rotor/fuselage dynamics in
hover directed toward a validated snalytic simula-
lage dynamics for use in stability analyses and
high-performance control system design studies.

: Identification of linear, time-invariant state-
space models representing high-order helicopter
dynamics including main rotor degrees of freedom
has long been an objective of engineers involved in
rotorcraft simulation and control system design.
The state and control matrix elements in an idend-
fied state-space model can provide physical insight

into system dynamics and can be used in combina-
tion with mathematical modeling techniques to
analyze differences between theory and experi-
ment.

State-space identification techniques have
been applied to conventional fixed-wing aircraft
with useful results. Since identification of state-
space models using directly parametrized state and
control matrix elements requires the estimation of
a large number of parameters, a reduced order mod-
el is often used, assuming six degree-of-freedom
rigid body dynamics and decoupling between the
longitudinal and lateral axes.

Identification of reduced order state-space
models for rotorcraft have generally produced un-
satisfactory results. The presence of the rotor pro-
additional states to describe the high-frequency dy-
coupling. The complete rotarcraft identification
problem is therefore required to use a high-order,
multi-input, multi-output model with as many as
18 or more states.

In order to avoid the inevitable problem of
overparametrization which results when attempt-
ing to identify a directly parametrized high-order
belicopter model, this study uses an analytic model
to generate state time histories. The model used in
this study has been developed at Princeton using the
Lagrangian formulation. It includes the coupled fu-
selage/rotor dynamics, main rotor inflow, tail rotar
thrust, and provides for tail rotor inflow dynamics.
It was analytically linearized about hover. This
model provides a state-space description of the he-
licopter at hover which is complesely snalytic and
dependent only on an input set of physical parame-
ters. A subset of these inputs are considered uncer-
tain, and are to be estimated from flight sest data.
The flight-test derived parameter estimates can be
used in combination with the mathematical for-
mulation to trace various physical aspects of
coupled rotor/body dynamics and thereby obtain
physical insight. The complete high-order model
including rotor dynamics can be reasonably para-
metrized by 15 or fewer physically meaningful in-
put coefficients, resulting in & substantial reduction
in the number of parameters to be estimated.



The framework of the identification ap-
proach is the time-domain maximum likelihood
methodology. The likelihood function is formu-
lated assuming the presence of Gaussian measure-
ment and process noise. The process noise may be
nonwhite. The noise covariances as well as process
noise dynamics may be parametrized. With Gaus-
sian noise assumptions, the likelihood function be-
comes the weighted least-square of the residual
errors. The Kalman filter is the natural way to pro-
duce these residuals for state-space dynamic sys-
tems.

The maximum likelihood estimate is ob-
tained by finding the global maximum of the likeli-
hood function. The parameters are nonlinearly
related to the cost function and the resulting param-
eter space is highly multimodal. Traditional func-
tion optimization techniques based om gradient
methods generally become trapped in local optima.

The genetic algorithm is an alternative func-
tion optimization approach which does not rely on
the use of local gradient information. The genetic
algorithm is an adaptive scheme, based on the anal-
ogy with natural evolution, which efficiently
searches a large parameter space for the ’fittest’
solution to a given objective. This method has been
demonstrated to be highly effective in obtaining the
global maximum in a multimodal parameter space.

The formulation of the system identification
problem in the maximum likelihood framework
leads to estimates of physical coefficients which
have attractive statistical optimality properties and
represent the best possible combination of physical
coefficients necessary to match the given test data
set.

This identification methodology allows an
assessment of model assumptions inherent in the
mathematical model used to generate the state time
histories. In this study, emphasis is placed on the
frequency region associated with coupled rotoc/fu-
selage dynamics. In the frequency domain, the
dominant feature in the rotor magnitude respoase is
a notch characteristic produced by the presence of
the in-plane blade degree of freedom. Using rotor
blade constants derived through the identification
procedure, rotor blade modeling assumptions may
be examined, resulting in analytic model improve-

ments. This study examines in detail the blade
structural modeling assumption and investigates
the effect of accounting for blade flexibility effects
generated by the presence of a large mechanical
damper at the blade hinge.

Analytic Model Description

Research at Princeton has resulted in the de-
velopment of a linearized rotor/body belicopter dy-
namic model. The dynamic equations are
formulated using a Lagrangian approach in order to
capture all the important inertial coupling terms.
The model includes rigid-body translation and
rotation (pitch, roll, and yaw rates, longitudinal and
lateral velocities), rigid blade lag and flap multimo-
dal coordinates, and main rotor cyclic dynamic in-
flow. The controls are main rotor cyclic and pedals.
The version of the model used in this study was ana-
lytically linearized about the hover trim condition
and does not include the collective degree of free-
dom.

Rotorcraft dynamics includes coupling be-
tween the motion of the fuselage which is in rota-
tional and translational motion relative to inertial
space, and the motion of individual rotor blades.
The final set of equations of motion are referenced
to the body-fixed axis system which has its origin
at the fuselage center of gravity, In the Newtonian
approach to modeling coupled rotor/fuselage equa-
tions of motion, blade acceleration terms are first
written referenced to the hub axis which is rotating
at constant velocity; coordinate transformations are
then used to obtain acceleration terms in the body-
fixed frame. The complexity of the resulting accel-
eration terms, combined with the pumber of
degrees of freedom necessary to model rotor dy-
namics properly, has led to the use of Lagrange's
equations for the derivation of the coupled rotor/
body model.

The development of Lagrange’'s equations
proceeds from the evaluation of the Lagrangian,
which requires only position and velocity terms in
order o relate the system generalized forces to
changes in the system kinetic and potential ener-
gies. The generalized coordinates in Lagrange’s
approach represent the degrees of freedom in the
system and are chosen to correspond to the system



states. The kinetic energy term includes the motion
of the fuselage and rotor blades, and the potential
energy includes the gravitational potential energy
of the fuselage and stored energy in the mechanical
springs in the rotor system. Mechanical dampers
are accounted for by use of the dissipation function.
The generalized forces include aerodynamic forces
due to fuselage and blade aerodynamics. Evalua-
tion of the time and partial derivatives in the La-
grangian can be time consuming for a high-order
model and can be assigned to a symbolic manipula-
tion program such as MACSYMA.

Identification Methodology

This paper describes an approach for identifi-
cation of a coupled fuselage/rotor model for rotor-
craft hover dynamics from flight test
measurements. The identified model includes flap
and lag degrees of freedom, main rotor inflow, and
process and measurement noise disturbances. The
process noise may be colored. The approach uses
an analytically derived, linear time-invariant
state-space model with literal coefficients which is
parametrized in terms of acromechanical input co-
efficients. The model order and structure may
therefore be assumed to be determined by this ap-
proach, and the system parameters are to be esti-
mated from observations. The parameter
estimation problem is formulated using the statisti-
cal framework of maximum likelihood (ML) es-
timation theory, thereby benefitting from known
optimality properties of ML estimators. This dis-
cussion first presents the parametrized dynamic
model to be used in the identification methodology.
and then describes the application of the maximum
likelihood estimation approach to dynamic sys-
tems. :

Model Parametrization

The helicopter is modeled as a continuous-
time dynamic system whose measurements are dis-
cretely sampled as sensor outputs. Thus the
identification algorithm is required to estimate con-
tinuous-time model parameters from discrete sen-
sor measurements. This coatinuous/discrete
formulation is well known and is discussed by

Ljung (1987). The linear time-invariant state
equations are derived using the Lagrangian ap-
proach, and are given by

1) = A(O)(t) + BLO)u(t) + FL6)W(r) (1)

The model form accounts for the presence of pro-
cess noise, where w(?) is assumed to be zero-mean
white noise with unity spectral density. The contin-
uous-time matrices, A (), B.(6), and F (@), are
parametrized by a vector of parameters, 8, which
are to be estimated from observations.

The observations are sampled at discrete
time intervals, where

HHT) = COWKD) + GOW{kD)
t=kT, k=012, . (2)

and v{(kT) are the disturbance effects at the
sampled time intervals.

For digital implementation of the identifica-
tion algorithm, the continuous-time state equation
given in Equation (1) is discretized using zero-or-
der hold. The input is assumed to be beld constant
over the sampling time interval, and the continu-
ous-time state equation can then be integrated ana-
Iytically over the interval in order to obtain the
discrete-time state equation. The zero-order hold
discretization introduces a phase lag equivalent to
one-half sample interval, which is taken into ac-
count by advancing the coatrol input by the corre-
sponding one-half time interval.

Eliminating time subscripts for simplicity,
the discrete-time state-space equations are given
by

a0t + 1) = A@M0) + BOXAt) + F(O)w(r)
Ke) = C(O)s) + G(OWr) (K))

This equation is now understood to be a discrete-
time equation. Here, w(¢) and v(¢) are sequences
of independent random variables with zero mean
and unit covariance.

Maximum Likelihood Formulation

Let YV be a vector of observations which are
supposed to be realizations of stochastic variables,



and let y(¢t) be a multi-dimensional observation
taken at time t:

¥ = [%1),%(2),.. XN)]

The observations, YV, depend on a vector of param-
eters, 6, which are also considered to be random
varisbles. The conditional probability density
function for 6, given the observations, Y¥, is then
given by

o) = 2P0 @

where p(6) is the prior distribution of the random
parameter vector. A reasonable estimate for 6 can
then be obtained by finding the value of & which
maximizes the conditional density function given
by Equation (4). With no prior knowledge of the
distribution of 6, p(6) may be assumed to be uni-
form. The best estimate for 6 is then obtained by
maximizing the likelihood of obtaining the ob-
servations. This leads to the ML, or maximum li-
kelihood, estimator, given by

b = argmaz p(r™0) 0
0

For parametrized dynamical systems, with
Gaussian noise assumptions, the maximum likeli-
hood estimator has the form

by = arg max p(re)
- N
- - T i) , -
arg max ~ 4 > 6701014~ (0)(1.0)

()

Siogton - Big2n  (6)

where

m = number of measurements
£(1,0) = 1) — ¥1,6)
A(8) = Ee(6)e7(9)

and y(¢,6) is generated using Equation (3) with the
discrete-time Kalman filter formulation.

The Genetic Algorithm

The evaluation of the likelihood function as
presented in Equation (6) requires a search for the
global maximum of the likelihood function over a
multimodal parameter space whose contours are
not known. Specifically, the identification method-
ology has led to a function optimization problem
where the performance measure is a highly nonlin-
ear function of many parameters. The principal
challenge facing the identification problem is the
very large set of possible solutions and the presence
of many local optima. Hillclimbing methods for

- function optimization based on finding local gradi-

ents become trapped in local optima and are inade-
quate for this problem. Genetic algorithms
overcome these difficulties by efficiently searching
the parameter space while preserving and incorpo-
rating the best characteristics as the search prog-
resses.

The problem of function optimization can be
addressed using the paradigm of adaptive systems,
where some objective performance measure (the
cost function) is to be maximized (i.e., adaptation
occurs) in a partially known and perbaps changing
environment. The idea of artificial adaptive plans,
based on an analogy with genetic evolution, was
formally described by John Holland in the seventies
and have recently become an important tool in
function optimization and machine learning (Hol-
land, 1975, and Goldberg, 1989). Holland’s artifi-
cial adaptive plans have come to be known in recent
literature as genetic algorithms,

Genetic algorithms are based on ideas under-
lying the process of evolution; i.e., natural selection
and survival of the fittest. Using biological evolu-
tion as an analogy, genetic algorithms maintain a
population of candidate solutions, or 'individuals,’
whose characteristics evolve according to specific
genetic operations in order to solve a given task in
an optimal way.

As a general overview, genetic algorithms
have the following attributes which distinguish
them from traditional hillclimbing optimization
methods (Goldberg, 1989):



1. GA's work with a representation of the pa-
rameter values rather than with the param-

eters themselves.

2. GA’s search from a population of points,
not from a single point.

3.  GA’s use objective function information,
not gradient information.

4. GA's use probabilistic transition rules, not
deterministic ones.

The genetic algarithm maintains a popula-
tion of ’individuals’; i.e., possible solutions to the
function optimization problem. In the context of
the identification problem, each individual corre-
sponds to & vector of parameters. The population
of individuals "evolves’ according to the rules of re-
production and mutation analogous to those found
in natural evolutionary processes, with the result
that the population preserves those characteristics
favoring the best solution to the cost function.

The following steps were described by Hol-
land (Holland, 1975) and contain the essentials
properties of the the basic genetic algorithm.

ulation probabilistically, after assigning
each individual a probability proportional
to its observed perfarmance.

2. Copy the selected individual, then apply

genetic operators to the copy to produce a
new individual

3. Select a second individual from the popu-
lation at random (all elements equally

likely) and replace it by the new individual
prodoced in siep 2.

4. Obeerve and record the performance of the
new structure,

S. Returntostepl.

This deceptively simple set of instructions
contains the ability to test large mumbers of new
combinations of individual characteristics and the
ability to progressively exploit the best observed
characteristics. It does so through the use of genetic
operators.

Genetic Operators

Parent selection based on fitness, and the
subsequent application of genetic operators to pro-
duce pew individuals are the steps by which the al-
gorithm modifies the initial population and
continually tests new combinations while main-
taining those parameter sets which give high fit-
ness. Each of these operations are performed
probabilistically.

The initial population of individuals is se-
lected randomly with a uniform distribution over
the defined parameter space. After one generation,
parent individuals are selected randomly, with a
probability which is proportional to the fitness as-
signed to that individual. The selection procedure
resembles spinning a roulette wheel whose circum-
ference is divided into as many segments as there
are individuals. The arc length of each segment is
made proportional to the fitness value of the corre-
sponding individual. Thus, the chance of choosing
a given individual is uniformly random and yet pro-
portional to its fitness.

The genetic operations of crossover and
mutation are then applied to the selected parent in-
dividuals in order to introduce new characteristics
into the population, enabling an efficient search for
the optimal cambination of parameters.

The crossover operation involves a recom-
bination of two selected individuals at a randomly
selected point. Thus the crossover operation pro-
duces two new individuals, each of whom inherit
characteristics from both parents.

The mutation operation involves a random
alternation of an individual’s characteristic with a
very low probability. This serves to introduce new
information into the pool of structures and serves to
guard against the possibility of becoming trapped in
local optima.

Genetic Coding
Each individual is a candidate parameter set

and is represented as a concatenation of individual
parameters:



8=1000,, ...0

In a digital implementation, each parameter
6, is encoded using a binary alphabet, and the indi-
vidual is thus represented by a binary-valued
string. The following specific coding scheme was
suggested by Starer (Starer, 1990).

Let each parameter 6, be bounded by 6,
and 6, . If each parameter is coded in binary with
a word length of I, then the interval (8, .0, ] is
discretized by 2/ values. A representation of the pa-
rameter 8, can be obtained from the I-bit binary
coding of

(o, - o,.__,.)(zl -

91... - 9.'_,.

mod

To illustrate, let an individual represent a
candidate parametrization where

and bounds sre given as

1<6,<4,2<0,<7,1=6

The binary-valued string representing this candi-
date vector is then

Opinery = (101010 011111]

The genetic algarithm is illustrated in Figure

0 1 0 0

1 0 0 1

1 1 1 1 ,

0 1 0 0 initial population
0 0 1 1

1 0 1 1
l 1 parent selection

based on fitness

0 0

1 0 .

1 1

0 0 randomly selected
— — crossover point
0 1

1 1

1 1 crossover

0 0

1s 0

1 1 random mutation
0 0=

1 0

1 1

0 0

0 0

1 1 new population
0 1

1 0

1 1

Figure 1 The Genetic Algorithm

[mplicit Parallelism

Genetic algorithms efficiently conduct a
scarch over a defined parameter space, converging



to a near-optimal solution. The basic unit of pro-
cessed information in this genetic search is the
schema, defined by Holland (1975). In the context
of a digital implementation of genetic algorithms,
a schema is a template specifying similarities at
certain string positions.

Thus, an individual is a string of binary dig-
its, and the alphabet is composed of (0,1,#},
where # denotes 'don’t care’ (i.e., the value at this
position has no effect on the performance measure-
meat). As an example, an individual may be repre-
sented as

[0011101100010]

A schema is a similarity template within this
individual; so that this individual contains the sche-
mata given by

00##101100010]

Given ! positions, a single individual is an
instance of 2/ distinct combinations, and an
instance of 3/ distinct schemata. Further, a popula-
tion of size N contains between 3/ and N3’ distinct
schemata. Holland has shown that each schemata
are evaluated and processed independently of the
others, providing a tremendous camputational le-
verage on the number of function evaluations.
Therefore, the use of genetic operators in the repro-
ductive plan provides i) intringic parallelism in the
testing and use of many schemata, and ii) compact
storage and vee of large amounts of information re-
sulting from prior obeervations of schemata.

The concept of implicit parallelism is funda-

mental to the efficiency of genetic algorithms.
Each schemata is processed and evaluated indepen-
dently of other schems in the population; this pro-
vides a tremendous computational leverage. A
very weak lower bound states that for a population
of (n) individuals, more than o{n’) useful pieces’
of information is processed in each iteration (Gold-
berg, 1989). o

An Example

As an illustration of the genetic algorithm,
consider the following example.

flry) =
3 = yfemr-ust? -

10} - » - #)er2 - Le-orrr-a

The function surface is shown in Figure 2,
along with the contour lines, This multimodal
function has a giobal maximum at
(1.5814, - 0.0093).

A genetic algorithm was run on this function
with a population size of 20. The initial guesses
were chosen randomly, and were bounded as
-3<x<3 ~-3<y<3 A binary code
with wardlength of 8 was used, which means that
both x and y were discretized by 256 points. Anex-
haustive grid search under these conditions would
involve evaluating 65536 possible points to find the
global maximum.

Snapshots of the population distribution up to
7 generations are shown in Figure 2. The snapshots
show the population converging upon the global
maximum; by the 7 generation, most of the indi-
viduals have converged on the maximum. The ge-
netic algorithm in this case converges om
(1.5412, — 0.0353) as the global optimum.

This coavergence has occurred after 7 gen-
erations. With a population size of 20 individuals,
this is 140 function evaluations as compared to the
65536 necessary for the grid search.

This relatively simple example serves to il-
lustrate the ability of the genetic algorithm to find
the optimum of a given function , using no gradient
information.

flight test data using nominal values for input coef-
ficients. The correlation plots in Figure 3 show
transfer function comparisons for pitch and roll
axes. The data represent separate flights. In each
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case, the comparison is between the flight test rate
gyro output and the model state. The comparison
is made between 0.5 Hz (3.14 rad/sec) and 6 Hz
(37.7 rad/sec) since the input signal was designed
to cover this frequency range. The fuselage struc-
tural bending modes are lightly damped and domi-
nate the frequency above ~20 rad/sec. Therefare
the identification procedure uses a bandpass filter
with the upper cutoff frequency at 15.7 rad/sec. The
frequency range of interest is therefore between 0.5
Hz t0 2.5 Hz (3.14 rad/sec to 15.7 rad/sec).

The choice of physical coefficients used to
parametrized dynamic model must allow adjust-
ments to account for differences between test and
theoretical responses using nominal physical input
values. The gain differences at low frequencies,
implying a mismatch in rigid body respoase, re-
quires parametrization of the rigid body accelera-
tion. The coupled fuselage/lagwise modes are a
lightly damped pole-zero pair and create a notch-
filter effect in the frequency respanse between 10
- 15 rad/sec. This frequency is near the - 180 degree
crossover, and a mismarch in this region adversely
impacts the gain and phase margin calculations.
Modeling the dynamics of this mode is important
for control system design and stability analysis and
will be the primary focus of modeling in this study.

Validation Of Identification Procedure Using
Simulated Data

The maximum likelihood identification
methodology for parametrized dynamic systems is
validated first on a simulation with known parame-
ters. These results demonstrate the feasibility of us-
ing genetic algorithms to estimate physical
ulation size and crossover and mutation rates for
this applicati

The simulation model is driven by flight test
control inputs from the hovering condition. Main
rotor pitch and roll cyclic and tail rotor pedals are
all active, with primary excitation into roll cyclic.
The output states used to form the cost function are
pitch, roll, and yaw rates, and pitch and roll atti-
tudes. No velocity information is necessary.

Simulation Model Parametrization

The model structure and parametrization was
presented in Equations (1) through (3). The coatin-
uous-time state space model is analytically derived
using the Lagrangian approach and using a vector
of physical input coefficients, 8. For the purposes
of this simulation study, the model structure has
been augmented to include a first order time
constant on process noise. The process noise dy-
namics are to be parametrized and estimated from
output data.

The simulation model was parametrized as
follows:
aerodynamic coefficients:

lift curve slope, a

inflow equivalent cylinder height, hhnd

inflow wake rigidity factor, wrf

hover trim values:

trim flap angle, 3,

trim main rotor pitch angle, ¢,

trim inflow velocity, v,

main rotor blade constants:

lag damper coastant, T,

lag spring constant, K

flap spring constant, K,

inertias:
fuselage cross-moment, /;
tail rotor:
7 tail rotar thrust scale factor, K7z
noise parameters:

noise covariance ratio, VR

Process noise time constant, t
Kalman filter theory allows optimal state estimates
to be obtained in the presence of state and measure-
ment noise, where the Kalman gain is uniquely de-
termined up to the ratio of process to measurement
noise. The noise covariance estimate is therefore
parametrized by the ratio of process to measure-
ment noise.

Genetic Algorithm Procedure

The genetic algorithm was implemented us-
ing a population size of 500 individuals; a crossover
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rate of 2/3; and a mutation rate of 1/1000. The pa-
rameters were allowed to vary within 50 percent of
the known simulation values.

% 1 4 8 8 8 8 % e D
Iteration

Figure 4 Best Likelihood Values

The sensitivity of the cost function to the pa-
rameter values vary widely. Therefore, as parame-
ters begin to show comvergence, the range of
allowable values is progressively narrowed in order
to demoanstrate coavergence for all parameters.

The identification proceeds by running
10-12 separate genetic algorithms simultaneously,
where each algorithm begins with a new random
number generator seed to select the initial guesses.
Each set of nns therefore produces a scatter band
of near optimal guesses for each parameter. The pa-
rameters which influence the cost function most are
identified most tightly.

Figure 4 shows the progression of the best fit-
ness values out of the population at each genera-
tion. The results are shown in Figure 5. The solid
line in each figure denotes the true value.

The noise covariance ratio parameter cou-
ples only very weakly to the cost function and dis-
plays an almost random distribution until the
physical coefficient estimates sufficiently com-
verge. Therefore a two-step estimation procedure
is required, where the noise ratio is allowed to re-
main free until physical coefficients have con-
verged. The physical coefficients are then fixed
while the noise ratio is estimated.

This methodology clearly demoastrates con-
vergence. Twenty iterations of the genetic algo-
rithm were run. Table 1 tabulates the parameter
estimates.

Table 1 Estimated Parameters, Simulation Study

Parameters

lift curve slope, a

inflow equivalent cylinder height, hhnd
inflow wake rigidity factor, wrf

trim flap angle, S,

trim main rotor pitch angle, ¢,

trim inflow velocity, v,

lag damper constant, T,
Mmm K,

flap spring constant, K,

fuselage cross-moment of inertia, [z
tail rotor thrust factor, Krg

covariance ratio, process/measurement, VR
process noise time constant, 7

0, b, sd
5.73 572 3.98¢e4
0.46 0.46 223e4
20 20 1.34e4
0.02 0.02 4.99%-7
0.05 0.0497 9.75¢-6
0.02 0.0196 2.6le-6
50 4978 7.7¢-3
75.0 75.0 7.06e-2
450 4492 6.3¢-3
30,000 30,035 498
1.0 099 9.35¢4
1.0 097 0.11
-1.0 -0.99 1.8¢-3
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Flight Test Identification Results

Data consistency checks ensure that errors in
data collection do not interfere with the estimation
procedure. The requirements for this step were
minimal in this study, since this estimation method-
ology requires only rate and attitude information.
Consistency was checked by integrating accelera-
tions and rates, and ensuring that sensor attitudes
and rates match the integrated rates and attitudes.

The flight test data was processed by 1) ap-
plying a bandpass filter, and 2) decimating the data
from 80 Hz to 8 Hz. The filter passband was from
0.5t02.5Hz (3.1416 to 15.708 rad/sec). The lower
bound corresponds to the beginning frequency of
the frequency sweep input used to drive the system,
and the upper bound is imposed to exclude the first
fuselage bending mode at 3.4 Hz.

The flight test identification parametrization
was modified to reflect information available from
comparison between test and theoretical responses
generated from the analytic model using nominal
parameter valies. The parameter list used in flight
test identification runs is shown in Table 2. The
modifications are explained below.

The parametrization of body inertias ac-
~ counts for significant differences between theory
and test in rigid body response, especially in the roll
axis. Further, due to significant differences in

cross-axis predictions, the roll and yaw rigid body
responses could not be simultaneously satisfied.
Therefore, yaw axis parameters were eliminated,
and the identification scheme therefore attempts to
fit pitch and roll responses oaly. This is permissible
since for small motions about hover, yaw rate does
not couple with main rotor cyclic multiblade coor-
dinates and has no effect on pitch and roll respoases
in the rotor/body frequency region.

The inflow equivalent cylinder height (hAnd)
is related to the main rotor dynamic inflow time
constant. This parameter had no effect on the cost
function in the bandpass frequency region used in
this study. Therefore a quasistatic main rotor in-
flow formulation was used and this parameter was
dropped.

The process noise dynamics, parametrized
by a first order time constant, was also eliminated.
This parameter is uniquely identifiable apart from
the noise power ratio only if the time constant falls
within the bandpass frequency range, and was
found to have no effect on the cost function.

The ideatification run was carried out using
flight test data from hover, with primary excitation
into roll cyclic. The analytic model, parametrized
as given in Table 2, was driven by main rotor pitch
and roll cyclic and tail rotor pedal. The likelihood
function was formed using pitch and roll rates only.

Table 2 Estimated Parameters, Flight Test

Parameters

scale factor, fuselage roll moment of inertia, /;
scale factor, fuselage pitch moment of inertia, /,
lift curve slope, a

inflow wake rigidity factor, wrf

trim flap angle, 8, -

trim main rotor pitch angle, £,

trim inflow velocity, ¥,

lag damper constant, T,

lag spring coastant, K

flap spring constant, K,

noise covariance ratio, NR

A

8 sid bounds  nominal
044 0011  035-10 10
L15 0033 07-13 10
8.4 0066  5-10 573
80 023 2-11 20
0.162 00013  005-025 0.0848
00172 000016 0005-0.15 0.1304
0048 00007 001-0.I 00613
55 0.10 4-10 95
85.0 0735  0-100 0

16 134 0-20 0

- - 0001-0.1 -




The initial choice of boundary limits on each
parameter defines the parameter space to be
searched in the identification algorithm. The
bounds applied to each parameter are shown in
Table 2; in each case, the bounds are chosen to in-
clude the nominal value.

Table 2 shows the identification results for
flight test data. It was found that the noise ratio pa-
rameter did not comverge while the remaining
physical coefficients did, indicating that relative to
the aeromechanical coefficients, noise powers af-
fect the cost function only very weakly.

The correlation with flight test data using the
identified parameters is shown in Figure 6, where
the roll axis response is correlated with the data set
used in the identification, and the pitch axis re-
sponse is an independent check. The roil axis cor-
relation shows clear improvement in model
correlation using identified coefficients. The low
frequency gain prediction has been corrected
through the inertia adjustment, and the notch in
gain response due to the coupled lag/body respoanse
has been corrected.

The differences between ideatified and nom-
inal parameters can provide physical insight into
rotor phenomens when analytic explanations can
be found for parameter differences. The identified

parameters for lift curve slope, a, and wake rigidity

factor, wrf, have produced significant improvement
in model response, indicating a possible require-
ment for refinement of the aserodynamic theory
used in the model. The identified parameters for
necessary refinements in the prediction of frequen-
cy and damping of blade motion. A model im-

presented.

Modeling Blade Elasticity

The identification procedure has resulted in
estimated values for rotor blade spring and damp-
ing parameters which are different from nominal
values. The nominal mechanical damper value
may be assumed to be known since it can be inde-
pendently verified through available data.

A procedure for modeling blade elasticity is
presented which accurately accounts for differ-
ences between nominal and estimated values for in-
plane motion frequency and damping. The method
of assumed modes is used to model the case of a
flexible beam with damper and spring constraints.
This procedure is first demonstrated on a nonrotat-
ing beam, for which an exact solution can be ob-
tained. The method of assumed modes will be
shown to be a good approximation of the exact solu-
tion. This approximate solution can then be used in
the flexible beam analysis in the analytic hover he-
licopter model. The beam formulations for both ro-
tating and noorotating blades with both spring and
damper constraints at the root is given in detail in
Appendices A and B.

Approximate solution methods such as the
method of assumed modes display convergence to-
ward the analytic solution as more assumed mode
shapes are added to the set of basis functions. The
first approach to the lagwise bending problem was
to use increasing numbers of mode shapes that ful-
filled the boundary conditions for a hinged beam.
However, with this approach, convergence was not
achieved after even after using § assumed modes.
In order to avoid using an unacceptably large oum-
ber of basis polynomials in the model, an alterna-
tive approach using a combination of modes that
satisfy hinged and cantilever boundary conditions
was used.

Figure 7 illustrates the assumed modes solu-
tion method using both the noarotating and rotating
beam formulations. For a noaorotating beam with
spring and damper constraints, an exact expression
for the beam eigenvalues is available and is given
in detail in Appendix B. The analytic eigenvalue
equation is solved numerically. In this case, the
root finding problem was converted into a function
optimization problem and solved using the genetic
algorithm, This solution to the exact formulation is
shown against approximate solutions in Figure 7.
The approximate solution using the Lagrangian ap-
proach, when using only basis finctions which ful-
fill hinged beam boundary conditions, approach the
exact solution slowly. With 4 hinged basis polyno-
mials, the solution has not yet converged. Howev-
er, the assumed modes approach with oaly one
hinged plus one cantilever mode shapes matches
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the analytic solution exactly. Convergence is dem-
onstrated by the fact that addition of either hinged
or cantilever mode shapes do not further change the
eigenvalue solution.

Figure 7 then shows the convergence of the
approximate solution for the rotating beam, for
which there exists no known exact solution. Here,
the sum of 2 hinged plus 2 cantilever modes is near
convergence. The addition of either one more
hinged or one more cantilever mode does not
change the solution appreciably. The combination
of 2 hinged plus 2 cantilever modes is chosen for
model development as a good compromise between
model order and accuracy of solution.
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Figure 8 Rotating Frame Lag Roots

Figure 8 shows the location of the rotating
frame lag mode eigenvalues. The elastic blade
model using two hinged and two cantilever mode

shapes is used to show the progression of the root

location as damper value is increased from zero to
the nominal value. The predicted root location for
the elastic model with the nominal damper constant
agrees reasonably well with the predicted location
for the rigid blade model using a fictitious spring
and using identified spring and damper coastants.
The rigid blade model using nominal damper
constant only (no spring) predicts a much higher
damping and lower frequency than is indicated by
test data.

Couclusions

An analytically derived linear model of
coupied rotor/body dynamics at hover has been val-
idated against flight test data.

The analytic model with literal coefficients
has been parametrized using 11 physically mean-
ingful coefficients, including noise covariances.
This model has been used to formulate a multi-in-
put, multi-output likelihood function in the time
domain. The analytic model is used to generate the
state time histories. Only body rates are necessary
in the cost function.

The likelihood function is globally maxi-
mized using the genetic algorithm approach, result-
ing in statistically optimal maximum likelihood
parameter estimates.

The estimated parameters indicate that lag
mode damping in flight is approximately one-half
of the value expected from rigid blades.

The correct analytic prediction for lagwise
motion is obtained using an elastic blade formula-
tion. The flexible blade model was formulated us-
ing a normal mode approach and checked using the
closed form solution for a nonrotating beam. The
coavergence results using assumed mode shapes in-
shapes are obtained using a combination of cantile-
ver and hinged assumed modes.
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Appendix A. Modeling Blade Elasticity

Equation (A.1) gives the in-plane bending
equation for a rotating beam. The derivation can be



found in Bramwell (1976), and in Johnson (1980).
This partial differential equation relates the mo-
ments due to the inertial, centrifugal, and aerody-
namic forces to the moment expression from
engineering beam theory.

[EI"’Y] [G(r)

[ﬂ - Q| = @)

All quantities are understood to refer to lagwise
bending motion. Here, G(r) is the centrifugal ten-
sion force at a point at a distance 7 from the hub cen-
ter, E is the modulus of elasticity, / is the lagwise
area moment, and &2 is the rotor rotational velocity.

The boundary conditions for a hinged blade
are: '

At the hinge:
Y(e) =

Ela—’-,-momen:-o

At the tip:

i 4
Er'— a7 =

L) 4
F-dwarjbnx-o

There is no known analytic solution for
Equation (A.1) due to the presence of the centrifu-
gal term. A solution based on the method of as-

sumed modes is presented.
Let the lagwise displacement be of the form
Mz = 1Y ¢, "2

where R = blade length. This solution method fol-
lows the method of separation of variables. ¢,(x)
are a sequence of functions, not necessarily ortho-
gonal, which approximate the expected blade shape
and which satisfy the blade boundary conditions.

Substituting into Equation (A.1),

R

al L 23
sabl Lzt R GZq.a,qs.

Z(q,I -QqpRm =0 (A3

Multiply Equation (A.3) by ¢,. and integrate from
%<x< R, or 7 < x < 1 where Z is understood
to be a nondimensional offset value.

This gives

1 1
Zq.fe».%w:dx -R3q f:».%,w’.ds
R R 4

+R*Y (2, - @) f mpupuds = 0 (A4)

Integrating each term by parts, the first term gives

{ I
Za I bu s Elpids = [Z q».{;sw;‘]
' 1 1
+ f D QuElp puds
r 7 "
1
- 0T b, + [ Someivs us

- [ Z ML:EM'.']

Equation (A.4) was obtained using the boundary
caonditions for the hinged blade, along with the end
coastraint imposed by the damper, which is given
by

- _pdY
arl,., = ~Pamn,_, "

'DRZ ax a‘L-i

"~ where D = damping constant.

Similarly, the second term gives

1
RzZQH [¢-%G¢.dx -

4
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Using Equations (A.4) through (A.6),

1
j > anElpnpudz + RD Y pubnd,
" "
1
+R 34, f Gepupmls
" L 4
1

+ R (3, - 9a) I )b odt = 0

7

To evaluate this, nondimensionalize by mQ?R* and
collect terms, which results in

Amdy + Doy + B = 0

where

1

A ol

- RDQ . .
D- m'ozR.¢l¢-"

- f (et + Evb. - s
’ e

Bassfnitfgglforf;umedModeﬁnpu

Polymnhmmedud:ebamﬁmms.

@.(x). Two sets of polynamials, meeting the neces-
sary boundary conditions for hinged-free and can-

¢(.r)-x‘—2r’—gx‘+13—ox’+x

cantilever-free:

o(x) = & — 47 + 62
$(x) = 25 - 10x° + 2022

Since these polynomials meet boundary
conditions at x=0 and at x=1, and the blade for-
mulation is integrated from x = Z to x=1, the basis
polynomials are transformed to new coordinates,
where

x=(l-x+2

With this coordinate transformation, the new set of

polynomials, which now fulfill the necessary
boundary conditions at the hinge offset and at the
blade tip, are now

hinged-free:
Plx) = x -

¢lx) = l48x‘ 333° - 012:‘+4J.t“—
0.79x3 + 1.12x ~ 0.07

cantilever-free:

¢(x)-13x‘ 52:‘+78x’ }092r+003
¢(x) = 139:‘ 044:‘— 12.11:‘+
2510;1—303x+009

Appendix B. ExxtEqnabonsOfMohonFor
ANonrotaungBeam
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To find the exact analytic solution in the case
of root constraint with both spring and damper, note
that the boundary conditions are given by

¢0) =0
20 =[5 + 428y 0)

() =0
) =0

where K and D are spring and damper constants and
all quantities are understood to refer to lagwise mo-
tion and are defined as in Appendix A.

These boundary coaditions are satisfied by
writing the mode summation equation as

#0) = o) + [ 18 + a B[ 2D g

where ¢ (x) and ¢-(x) refer to hinged and cantile-
ver mode shapes.

The hinged end mode shape solutions are
given by

¢s(x) = cos(A) sink(Ax) + cosh(A) sin(Ax)
90) =0

9H0) = A [cos(A) + cosA)]

$K0) = 0

@r(1) = A? [cos(A) sinh(A) — cosh(A) sin(A)]
$r (1) = A® [cos(A) cosA) — coshA) cos(A)]]

The cantilever mode shape solutions are giv-
en by

Pclx) = (sin(A) ~ sinh(A)Xsin(Ax) — sinAx)) +
(cos(A) + cosh(A)Xcoa(Ax) — cosh(Ax))

oA0) = 0

¢l0) =0

PA0) = — 2A? [cos(A) + cosh(A)]

pll) = — A? I + cosh(A) cos(A)]

¢c(I) = A%((sin(A) ~ sinh(A)X — cos(A) —~ cosh(A)) +

(cos(A) + cosh(A))(sin(A) — sinh(A)) ]

Now use these known solutions for hinged
and cantilever mode shapes in the combined solu-
tion given above:

¢(0) = 0
$0) = $40)
#°0) = ® + DY - £occo)
#'W) = 9i0) + & + | - flocany
#'(1) = A [ costA) sinA) — cosh(A) sinlA) +

X + am[- 212][- 247 (1 + cosh(A) cos{A)]]
¢ ) =0

where

<%

o~

The boundary condition at the tip gives the
eigenvalue equation:

p ) =0

A? [cos(A) sink(A) — cos(A) sin(A)] +
A (K + @D 1 + cosh(A)coxA)] = 0
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